54.3.427 problem 1448

Internal problem ID [12722]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1448
Date solved : Wednesday, October 01, 2025 at 02:21:24 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }&=-\frac {b^{2} y}{\left (-a^{2}+x^{2}\right )^{2}} \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 77
ode:=diff(diff(y(x),x),x) = -b^2/(-a^2+x^2)^2*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sqrt {a^{2}-x^{2}}\, \left (\left (\frac {a -x}{a +x}\right )^{-\frac {\sqrt {a^{2}-b^{2}}}{2 a}} c_2 +\left (\frac {a -x}{a +x}\right )^{\frac {\sqrt {a^{2}-b^{2}}}{2 a}} c_1 \right ) \]
Mathematica. Time used: 0.16 (sec). Leaf size: 106
ode=D[y[x],{x,2}] == -((b^2*y[x])/(-a^2 + x^2)^2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \exp \left (\int _1^x-\frac {\sqrt {1-\frac {b^2}{a^2}} a+K[1]}{a^2-K[1]^2}dK[1]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[2]}-\frac {\sqrt {1-\frac {b^2}{a^2}} a+K[1]}{a^2-K[1]^2}dK[1]\right )dK[2]+c_1\right ) \end{align*}
Sympy. Time used: 0.309 (sec). Leaf size: 124
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(b**2*y(x)/(-a**2 + x**2)**2 + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {\sqrt {- a^{2} + x^{2}} \left (C_{1} \sqrt {\frac {x^{2}}{- a^{2} + x^{2}}} {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2} - \frac {\sqrt {1 - \frac {b^{2}}{a^{2}}}}{2}, \frac {\sqrt {1 - \frac {b^{2}}{a^{2}}}}{2} + \frac {1}{2} \\ \frac {3}{2} \end {matrix}\middle | {\frac {x^{2}}{- a^{2} + x^{2}}} \right )} + C_{2} {{}_{2}F_{1}\left (\begin {matrix} - \frac {\sqrt {1 - \frac {b^{2}}{a^{2}}}}{2}, \frac {\sqrt {1 - \frac {b^{2}}{a^{2}}}}{2} \\ \frac {1}{2} \end {matrix}\middle | {\frac {x^{2}}{- a^{2} + x^{2}}} \right )}\right ) \sqrt [4]{x^{2}}}{\sqrt {x}} \]