Internal
problem
ID
[12735]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1466
Date
solved
:
Wednesday, October 01, 2025 at 02:21:29 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=diff(diff(diff(y(x),x),x),x)-3*a*diff(diff(y(x),x),x)+3*a^2*diff(y(x),x)-a^3*y(x)-exp(a*x) = 0; dsolve(ode,y(x), singsol=all);
ode=-E^(a*x) - a^3*y[x] + 3*a^2*D[y[x],x] - 3*a*D[y[x],{x,2}] + Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-a**3*y(x) + 3*a**2*Derivative(y(x), x) - 3*a*Derivative(y(x), (x, 2)) - exp(a*x) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)