Internal
problem
ID
[12749]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1483
Date
solved
:
Friday, October 03, 2025 at 03:47:18 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=2*x*diff(diff(diff(y(x),x),x),x)-4*(x+nu-1)*diff(diff(y(x),x),x)+(2*x+6*nu-5)*diff(y(x),x)+(1-2*nu)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1 - 2*nu)*y[x] + (-5 + 6*nu + 2*x)*D[y[x],x] - 4*(-1 + nu + x)*D[y[x],{x,2}] + 2*x*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") nu = symbols("nu") y = Function("y") ode = Eq(2*x*Derivative(y(x), (x, 3)) + (1 - 2*nu)*y(x) - (4*nu + 4*x - 4)*Derivative(y(x), (x, 2)) + (6*nu + 2*x - 5)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (2*nu*y(x) + 4*nu*Derivative(y(x), (x, 2)) + 4*x*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), (x, 3)) - y(x) - 4*Derivative(y(x), (x, 2)))/(6*nu + 2*x - 5) cannot be solved by the factorable group method