Internal
problem
ID
[12758]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1492
Date
solved
:
Friday, October 03, 2025 at 03:47:19 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(diff(y(x),x),x),x)-3*(x-m)*x*diff(diff(y(x),x),x)+(2*x^2+4*(n-m)*x+m*(2*m-1))*diff(y(x),x)-2*n*(2*x-2*m+1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-2*n*(1 - 2*m + 2*x)*y[x] + (m*(-1 + 2*m) + 4*(-m + n)*x + 2*x^2)*D[y[x],x] - 3*x*(-m + x)*D[y[x],{x,2}] + x^2*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(-2*n*(-2*m + 2*x + 1)*y(x) + x**2*Derivative(y(x), (x, 3)) - x*(-3*m + 3*x)*Derivative(y(x), (x, 2)) + (m*(2*m - 1) + 2*x**2 + x*(-4*m + 4*n))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-4*m*n*y(x) - 3*m*x*Derivative(y(x), (x, 2)) + 4*n*x*y(x) + 2*n*y(x) + 3*x**2*Derivative(y(x), (x, 2)) - x**2*Derivative(y(x), (x, 3)))/(2*m**2 - 4*m*x - m + 4*n*x + 2*x**2) cannot be solved by the factorable group method