Internal
problem
ID
[12771]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1505
Date
solved
:
Friday, October 03, 2025 at 03:47:22 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=2*x*(x-1)*diff(diff(diff(y(x),x),x),x)+3*(2*x-1)*diff(diff(y(x),x),x)+(2*a*x+b)*diff(y(x),x)+a*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=a*y[x] + (b + 2*a*x)*D[y[x],x] + 3*(-1 + 2*x)*D[y[x],{x,2}] + 2*(-1 + x)*x*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(a*y(x) + 2*x*(x - 1)*Derivative(y(x), (x, 3)) + (6*x - 3)*Derivative(y(x), (x, 2)) + (2*a*x + b)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-a*y(x) - 2*x**2*Derivative(y(x), (x, 3)) - 6*x*Derivative(y(x), (x, 2)) + 2*x*Derivative(y(x), (x, 3)) + 3*Derivative(y(x), (x, 2)))/(2*a*x + b) cannot be solved by the factorable group method