Internal
problem
ID
[12773]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1509
Date
solved
:
Friday, October 03, 2025 at 03:47:23 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)+(4*x^3+(-4*nu^2+1)*x)*diff(y(x),x)+(4*nu^2-1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-1 + 4*nu^2)*y[x] + ((1 - 4*nu^2)*x + 4*x^3)*D[y[x],x] + x^3*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") nu = symbols("nu") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) + (4*nu**2 - 1)*y(x) + (4*x**3 + x*(1 - 4*nu**2))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-4*nu**2*y(x) - x**3*Derivative(y(x), (x, 3)) + y(x))/(x*(-4*nu**2 + 4*x**2 + 1)) cannot be solved by the factorable group method