Internal
problem
ID
[12777]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1513
Date
solved
:
Friday, October 03, 2025 at 03:47:23 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)-4*x^2*diff(diff(y(x),x),x)+(x^2+8)*x*diff(y(x),x)-2*(x^2+4)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-2*(4 + x^2)*y[x] + x*(8 + x^2)*D[y[x],x] - 4*x^2*D[y[x],{x,2}] + x^3*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) - 4*x**2*Derivative(y(x), (x, 2)) + x*(x**2 + 8)*Derivative(y(x), x) - (2*x**2 + 8)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**3*Derivative(y(x), (x, 3)) + 2*x**2*y(x) + 4*x**2*Derivative(y(x), (x, 2)) + 8*y(x))/(x*(x**2 + 8)) cannot be solved by the factorable group method