Internal
problem
ID
[12790]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1526
Date
solved
:
Friday, October 03, 2025 at 03:47:25 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^2*(x^4+2*x^2+2*x+1)*diff(diff(diff(y(x),x),x),x)-(2*x^6+3*x^4-6*x^2-6*x-1)*diff(diff(y(x),x),x)+(x^6-6*x^3-15*x^2-12*x-2)*diff(y(x),x)+(x^4+4*x^3+8*x^2+6*x+1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1 + 6*x + 8*x^2 + 4*x^3 + x^4)*y[x] + (-2 - 12*x - 15*x^2 - 6*x^3 + x^6)*D[y[x],x] - (-1 - 6*x - 6*x^2 + 3*x^4 + 2*x^6)*D[y[x],{x,2}] + x^2*(1 + 2*x + 2*x^2 + x^4)*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(x**4 + 2*x**2 + 2*x + 1)*Derivative(y(x), (x, 3)) + (x**4 + 4*x**3 + 8*x**2 + 6*x + 1)*y(x) + (x**6 - 6*x**3 - 15*x**2 - 12*x - 2)*Derivative(y(x), x) - (2*x**6 + 3*x**4 - 6*x**2 - 6*x - 1)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-2*x**6*Derivative(y(x), (x, 2)) + x**6*Derivative(y(x), (x, 3)) + x**4*y(x) - 3*x**4*Derivative(y(x), (x, 2)) + 2*x**4*Derivative(y(x), (x, 3)) + 4*x**3*y(x) + 2*x**3*Derivative(y(x), (x, 3)) + 8*x**2*y(x) + 6*x**2*Derivative(y(x), (x, 2)) + x**2*Derivative(y(x), (x, 3)) + 6*x*y(x) + 6*x*Derivative(y(x), (x, 2)) + y(x) + Derivative(y(x), (x, 2)))/(-x**6 + 6*x**3 + 15*x**2 + 12*x + 2) cannot be solved by the factorable group method