54.4.73 problem 1532

Internal problem ID [12795]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 3, linear third order
Problem number : 1532
Date solved : Friday, October 03, 2025 at 03:47:26 AM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime \prime }+x y^{\prime }+n y&=0 \end{align*}
Maple. Time used: 0.006 (sec). Leaf size: 58
ode:=diff(diff(diff(y(x),x),x),x)+x*diff(y(x),x)+n*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \operatorname {hypergeom}\left (\left [\frac {n}{3}\right ], \left [\frac {1}{3}, \frac {2}{3}\right ], -\frac {x^{3}}{9}\right )+c_2 x \operatorname {hypergeom}\left (\left [\frac {1}{3}+\frac {n}{3}\right ], \left [\frac {2}{3}, \frac {4}{3}\right ], -\frac {x^{3}}{9}\right )+c_3 \,x^{2} \operatorname {hypergeom}\left (\left [\frac {2}{3}+\frac {n}{3}\right ], \left [\frac {4}{3}, \frac {5}{3}\right ], -\frac {x^{3}}{9}\right ) \]
Mathematica. Time used: 0.006 (sec). Leaf size: 103
ode=n*y[x] + x*D[y[x],x] + Derivative[3][y][x] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_2 x \, _1F_2\left (\frac {n}{3}+\frac {1}{3};\frac {2}{3},\frac {4}{3};-\frac {x^3}{9}\right )}{3^{2/3}}+c_1 \, _1F_2\left (\frac {n}{3};\frac {1}{3},\frac {2}{3};-\frac {x^3}{9}\right )+\frac {c_3 x^2 \, _1F_2\left (\frac {n}{3}+\frac {2}{3};\frac {4}{3},\frac {5}{3};-\frac {x^3}{9}\right )}{3 \sqrt [3]{3}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
n = symbols("n") 
y = Function("y") 
ode = Eq(n*y(x) + x*Derivative(y(x), x) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (-n*y(x) - Derivative(y(x), (x, 3)))/x cannot be solved by the factorable group method