Internal
problem
ID
[12834]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1575
Date
solved
:
Friday, October 03, 2025 at 03:47:32 AM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)*sin(x)^6+4*diff(diff(diff(y(x),x),x),x)*sin(x)^5*cos(x)-6*diff(diff(y(x),x),x)*sin(x)^6-4*diff(y(x),x)*sin(x)^5*cos(x)+y(x)*sin(x)^6-f = 0; dsolve(ode,y(x), singsol=all);
ode=-f[x] + Sin[x]^6*y[x] - 4*Cos[x]*Sin[x]^5*D[y[x],x] - 6*Sin[x]^6*D[y[x],{x,2}] + 4*Cos[x]*Sin[x]^5*Derivative[3][y][x] + Sin[x]^6*Derivative[4][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") f = symbols("f") y = Function("y") ode = Eq(-f + y(x)*sin(x)**6 - 6*sin(x)**6*Derivative(y(x), (x, 2)) + sin(x)**6*Derivative(y(x), (x, 4)) - 4*sin(x)**5*cos(x)*Derivative(y(x), x) + 4*sin(x)**5*cos(x)*Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE f/(4*sin(x)**5*cos(x)) - y(x)*tan(x)/4 + 3*tan(x)*Derivative(y(x), (x, 2))/2 - tan(x)*Derivative(y(x), (x, 4))/4 + Derivative(y(x), x) - Derivative(y(x), (x, 3)) cannot be solved by the factorable group method