54.7.17 problem 1607 (6.17)

Internal problem ID [12866]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1607 (6.17)
Date solved : Wednesday, October 01, 2025 at 02:22:49 AM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} y^{\prime \prime }+a \sin \left (y\right )&=0 \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 49
ode:=diff(diff(y(x),x),x)+a*sin(y(x)) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \int _{}^{y}\frac {1}{\sqrt {2 a \cos \left (\textit {\_a} \right )+c_1}}d \textit {\_a} -x -c_2 &= 0 \\ -\int _{}^{y}\frac {1}{\sqrt {2 a \cos \left (\textit {\_a} \right )+c_1}}d \textit {\_a} -x -c_2 &= 0 \\ \end{align*}
Mathematica. Time used: 0.021 (sec). Leaf size: 43
ode=a*Sin[y[x]] + D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}\frac {1}{\sqrt {c_1+2 \int _1^{K[2]}-a \sin (K[1])dK[1]}}dK[2]{}^2=(x+c_2){}^2,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a*sin(y(x)) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out