Internal
problem
ID
[12874]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1615
(6.25)
Date
solved
:
Wednesday, October 01, 2025 at 02:28:29 AM
CAS
classification
:
[[_2nd_order, _missing_x]]
ode:=diff(diff(y(x),x),x)-(3*n+4)/n*diff(y(x),x)-2*(n+1)*(n+2)/n^2*y(x)*(y(x)^(n/(n+1))-1) = 0; dsolve(ode,y(x), singsol=all);
ode=(-2*(1 + n)*(2 + n)*y[x]*(-1 + y[x]^(n/(1 + n))))/n^2 - ((4 + 3*n)*D[y[x],x])/n + D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") n = symbols("n") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) - (3*n + 4)*Derivative(y(x), x)/n - (n + 2)*(2*n + 2)*(y(x)**(n/(n + 1)) - 1)*y(x)/n**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (2*n**2*y(x) - 2*n**2*y(x)**(n/(n + 1) + 1) + n**2*Derivative(y(x), (x, 2)) + 6*n*y(x) - 6*n*y(x)**(n/(n + 1) + 1) + 4*y(x) - 4*y(x)**(n/(n + 1) + 1))/(n*(3*n + 4)) cannot be solved by the factorable group method