Internal
problem
ID
[12882]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1623
(6.33)
Date
solved
:
Wednesday, October 01, 2025 at 02:44:26 AM
CAS
classification
:
[NONE]
ode:=diff(diff(y(x),x),x)+(y(x)+3*f(x))*diff(y(x),x)-y(x)^3+y(x)^2*f(x)+y(x)*(diff(f(x),x)+2*f(x)^2) = 0; dsolve(ode,y(x), singsol=all);
ode=f[x]*y[x]^2 - y[x]^3 + y[x]*(2*f[x]^2 + Derivative[1][f][x]) + (3*f[x] + y[x])*D[y[x],x] + D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") f = Function("f") ode = Eq((3*f(x) + y(x))*Derivative(y(x), x) + (2*f(x)**2 + Derivative(f(x), x))*y(x) + f(x)*y(x)**2 - y(x)**3 + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-2*f(x)**2*y(x) - f(x)*y(x)**2 + y(x)**3 - y(x)*Derivative(f(x), x) - Derivative(y(x), (x, 2)))/(3*f(x) + y(x)) cannot be solved by the factorable group method