Internal
problem
ID
[12885]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1631
(6.41)
Date
solved
:
Friday, October 03, 2025 at 03:50:38 AM
CAS
classification
:
[[_2nd_order, _with_potential_symmetries]]
ode:=diff(diff(y(x),x),x)-(3*y(x)+f(x))*diff(y(x),x)+y(x)^3+y(x)^2*f(x) = 0; dsolve(ode,y(x), singsol=all);
ode=f[x]*y[x]^2 + y[x]^3 - (f[x] + 3*y[x])*D[y[x],x] + D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") f = Function("f") ode = Eq((-f(x) - 3*y(x))*Derivative(y(x), x) + f(x)*y(x)**2 + y(x)**3 + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (f(x)*y(x)**2 + y(x)**3 + Derivative(y(x), (x, 2)))/(f(x) + 3*y(x)) cannot be solved by the factorable group method