Internal
problem
ID
[12919]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1679
(book
6.88)
Date
solved
:
Friday, October 03, 2025 at 03:50:49 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)-(a*x^2*diff(y(x),x)^2+b*y(x)^2)^(1/2) = 0; dsolve(ode,y(x), singsol=all);
ode=-Sqrt[b*y[x]^2 + a*x^2*D[y[x],x]^2] + x^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - sqrt(a*x**2*Derivative(y(x), x)**2 + b*y(x)**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - sqrt((-b*y(x)**2 + x**4*Derivative(y(x), (x, 2))**2)/a)/x cannot be solved by the factorable group method