Internal
problem
ID
[12960]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1724
(book
6.133)
Date
solved
:
Wednesday, October 01, 2025 at 02:55:19 AM
CAS
classification
:
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=diff(diff(y(x),x),x)*(x+y(x))+diff(y(x),x)^2-diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=-D[y[x],x] + D[y[x],x]^2 + (x + y[x])*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x + y(x))*Derivative(y(x), (x, 2)) + Derivative(y(x), x)**2 - Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -sqrt(-4*x*Derivative(y(x), (x, 2)) - 4*y(x)*Derivative(y(x), (x, 2)) + 1)/2 + Derivative(y(x), x) - 1/2 cannot be solved by the factorable group method