54.7.125 problem 1738 (book 6.147)

Internal problem ID [12974]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1738 (book 6.147)
Date solved : Wednesday, October 01, 2025 at 02:55:31 AM
CAS classification : [[_Painleve, `4th`]]

\begin{align*} 2 y^{\prime \prime } y-{y^{\prime }}^{2}+b -4 \left (x^{2}+a \right ) y^{2}-8 x y^{3}-3 y^{4}&=0 \end{align*}
Maple
ode:=2*diff(diff(y(x),x),x)*y(x)-diff(y(x),x)^2+b-4*(x^2+a)*y(x)^2-8*x*y(x)^3-3*y(x)^4 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=b - 4*(a + x^2)*y[x]^2 - 8*x*y[x]^3 - 3*y[x]^4 - D[y[x],x]^2 + 2*y[x]*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(b - 8*x*y(x)**3 - (4*a + 4*x**2)*y(x)**2 - 3*y(x)**4 + 2*y(x)*Derivative(y(x), (x, 2)) - Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(-4*a*y(x)**2 + b - 4*x**2*y(x)**2 - 8*x*y(x)**3 - 3*y(x)**4 + 2*y(x)*Derivative(y(x), (x, 2))) + Derivative(y(x), x) cannot be solved by the factorable group method