Internal
problem
ID
[13000]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1768
(book
6.177)
Date
solved
:
Friday, October 03, 2025 at 03:58:15 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x*y(x)*diff(diff(y(x),x),x)+(a*x/(b^2-x^2)^(1/2)-x)*diff(y(x),x)^2-y(x)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=-(y[x]*D[y[x],x]) + (-x + (a*x)/Sqrt[b^2 - x^2])*D[y[x],x]^2 + x*y[x]*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(x*y(x)*Derivative(y(x), (x, 2)) + (a*x/sqrt(b**2 - x**2) - x)*Derivative(y(x), x)**2 - y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt((-4*a*x**2*sqrt(b**2 - x**2)*Derivative(y(x), (x, 2)) + 4*b**2*x**2*Derivative(y(x), (x, 2)) + b**2*y(x) - 4*x**4*Derivative(y(x), (x, 2)) - x**2*y(x))*y(x)) + sqrt(b**2 - x**2)*y(x))/(2*x*(a - sqrt(b**2 - x**2))) cannot be solved by the factorable group method