Internal
problem
ID
[13003]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1771
(book
6.180)
Date
solved
:
Friday, October 03, 2025 at 03:58:15 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=x^2*(y(x)-1)*diff(diff(y(x),x),x)-2*x^2*diff(y(x),x)^2-2*x*(y(x)-1)*diff(y(x),x)-2*y(x)*(y(x)-1)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=-2*(-1 + y[x])^2*y[x] - 2*x*(-1 + y[x])*D[y[x],x] - 2*x^2*D[y[x],x]^2 + x^2*(-1 + y[x])*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(y(x) - 1)*Derivative(y(x), (x, 2)) - 2*x**2*Derivative(y(x), x)**2 - 2*x*(y(x) - 1)*Derivative(y(x), x) - 2*(y(x) - 1)**2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt((y(x) - 1)*(2*x**2*Derivative(y(x), (x, 2)) - 4*y(x)**2 + 5*y(x) - 1)) - y(x) + 1)/(2*x) cannot be solved by the factorable group method