Internal
problem
ID
[13009]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1777
(book
6.186)
Date
solved
:
Friday, October 03, 2025 at 03:58:18 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]
ode:=8*(-x^3+1)*y(x)*diff(diff(y(x),x),x)-4*(-x^3+1)*diff(y(x),x)^2-12*x^2*y(x)*diff(y(x),x)+3*x*y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=3*x*y[x]^2 - 12*x^2*y[x]*D[y[x],x] - 4*(1 - x^3)*D[y[x],x]^2 + 8*(1 - x^3)*y[x]*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-12*x**2*y(x)*Derivative(y(x), x) + 3*x*y(x)**2 - (4 - 4*x**3)*Derivative(y(x), x)**2 + (8 - 8*x**3)*y(x)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (3*x**2*y(x) + sqrt((8*x**6*Derivative(y(x), (x, 2)) + 6*x**4*y(x) - 16*x**3*Derivative(y(x), (x, 2)) + 3*x*y(x) + 8*Derivative(y(x), (x, 2)))*y(x)))/(2*(x**3 - 1)) cannot be solved by the factorable group method