Internal
problem
ID
[13015]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1784
(book
6.193)
Date
solved
:
Friday, October 03, 2025 at 03:58:19 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]
ode:=(x+y(x)^2)*diff(diff(y(x),x),x)-2*(x-y(x)^2)*diff(y(x),x)^3+diff(y(x),x)*(1+4*y(x)*diff(y(x),x)) = 0; dsolve(ode,y(x), singsol=all);
ode=-2*(x - y[x]^2)*D[y[x],x]^3 + D[y[x],x]*(1 + 4*y[x]*D[y[x],x]) + (x + y[x]^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x + y(x)**2)*Derivative(y(x), (x, 2)) - (2*x - 2*y(x)**2)*Derivative(y(x), x)**3 + (4*y(x)*Derivative(y(x), x) + 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out