Internal
problem
ID
[13046]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1820
(book
6.229)
Date
solved
:
Friday, October 03, 2025 at 03:58:24 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=a*x^3*diff(y(x),x)*diff(diff(y(x),x),x)+b*y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=b*y[x]^2 + a*x^3*D[y[x],x]*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(a*x**3*Derivative(y(x), x)*Derivative(y(x), (x, 2)) + b*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) + b*y(x)**2/(a*x**3*Derivative(y(x), (x, 2))) cannot be solved by the factorable group method