Internal
problem
ID
[13058]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1835
(book
6.244)
Date
solved
:
Wednesday, October 01, 2025 at 03:09:26 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(y(x)^2-x^2*diff(y(x),x)^2+x^2*y(x)*diff(diff(y(x),x),x))^2-4*x*y(x)*(-y(x)+x*diff(y(x),x))^3 = 0; dsolve(ode,y(x), singsol=all);
ode=-4*x*y[x]*(-y[x] + x*D[y[x],x])^3 + (y[x]^2 - x^2*D[y[x],x]^2 + x^2*y[x]*D[y[x],{x,2}])^2 == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x*(x*Derivative(y(x), x) - y(x))**3*y(x) + (x**2*y(x)*Derivative(y(x), (x, 2)) - x**2*Derivative(y(x), x)**2 + y(x)**2)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out