Internal
problem
ID
[13073]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
7,
non-linear
third
and
higher
order
Problem
number
:
1849
Date
solved
:
Wednesday, October 01, 2025 at 03:34:08 AM
CAS
classification
:
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]
ode:=diff(diff(y(x),x),x)*diff(diff(diff(y(x),x),x),x)-a*(b^2*diff(diff(y(x),x),x)^2+1)^(1/2) = 0; dsolve(ode,y(x), singsol=all);
ode=-(a*Sqrt[1 + b^2*D[y[x],{x,2}]^2]) + D[y[x],{x,2}]*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(-a*sqrt(b**2*Derivative(y(x), (x, 2))**2 + 1) + Derivative(y(x), (x, 2))*Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
ODEMatchError : nth_linear_constant_coeff_undetermined_coefficients solver cannot solve: nan