54.9.10 problem 1865

Internal problem ID [13088]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 8, system of first order odes
Problem number : 1865
Date solved : Wednesday, October 01, 2025 at 03:34:23 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=a_{1} x \left (t \right )+b_{1} y \left (t \right )+c_{1}\\ \frac {d}{d t}y \left (t \right )&=a_{2} x \left (t \right )+b_{2} y \left (t \right )+c_{2} \end{align*}
Maple. Time used: 0.162 (sec). Leaf size: 333
ode:={diff(x(t),t) = a__1*x(t)+b__1*y(t)+c__1, diff(y(t),t) = a__2*x(t)+b__2*y(t)+c__2}; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{\left (\frac {a_{1}}{2}+\frac {b_{2}}{2}+\frac {\sqrt {a_{1}^{2}-2 a_{1} b_{2} +4 a_{2} b_{1} +b_{2}^{2}}}{2}\right ) t} c_2 +{\mathrm e}^{\left (\frac {a_{1}}{2}+\frac {b_{2}}{2}-\frac {\sqrt {a_{1}^{2}-2 a_{1} b_{2} +4 a_{2} b_{1} +b_{2}^{2}}}{2}\right ) t} c_1 +\frac {c_{2} b_{1} -b_{2} c_{1}}{a_{1} b_{2} -a_{2} b_{1}} \\ y \left (t \right ) &= \frac {-\frac {a_{1} \left ({\mathrm e}^{\frac {\left (a_{1} +b_{2} +\sqrt {a_{1}^{2}-2 a_{1} b_{2} +4 a_{2} b_{1} +b_{2}^{2}}\right ) t}{2}} c_2 \left (a_{1} b_{2} -a_{2} b_{1} \right )+{\mathrm e}^{\frac {\left (a_{1} +b_{2} -\sqrt {a_{1}^{2}-2 a_{1} b_{2} +4 a_{2} b_{1} +b_{2}^{2}}\right ) t}{2}} c_1 \left (a_{1} b_{2} -a_{2} b_{1} \right )+c_{2} b_{1} -b_{2} c_{1} \right ) \left (2 a_{1} b_{2} -2 a_{2} b_{1} \right )}{a_{1} b_{2} -a_{2} b_{1}}+\frac {\left (a_{1} +b_{2} +\sqrt {a_{1}^{2}-2 a_{1} b_{2} +4 a_{2} b_{1} +b_{2}^{2}}\right ) {\mathrm e}^{\frac {\left (a_{1} +b_{2} +\sqrt {a_{1}^{2}-2 a_{1} b_{2} +4 a_{2} b_{1} +b_{2}^{2}}\right ) t}{2}} c_2 \left (2 a_{1} b_{2} -2 a_{2} b_{1} \right )}{2}+\frac {\left (a_{1} +b_{2} -\sqrt {a_{1}^{2}-2 a_{1} b_{2} +4 a_{2} b_{1} +b_{2}^{2}}\right ) {\mathrm e}^{\frac {\left (a_{1} +b_{2} -\sqrt {a_{1}^{2}-2 a_{1} b_{2} +4 a_{2} b_{1} +b_{2}^{2}}\right ) t}{2}} c_1 \left (2 a_{1} b_{2} -2 a_{2} b_{1} \right )}{2}-c_{1} \left (2 a_{1} b_{2} -2 a_{2} b_{1} \right )}{\left (2 a_{1} b_{2} -2 a_{2} b_{1} \right ) b_{1}} \\ \end{align*}
Mathematica. Time used: 0.743 (sec). Leaf size: 1684
ode={D[x[t],t]==a1*x[t]+b1*y[t]+c1,D[y[t],t]==a2*x[t]+b2*y[t]+c2}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 

Too large to display

Sympy. Time used: 0.695 (sec). Leaf size: 1574
from sympy import * 
t = symbols("t") 
a__1 = symbols("a__1") 
a__2 = symbols("a__2") 
b__1 = symbols("b__1") 
b__2 = symbols("b__2") 
c__1 = symbols("c__1") 
c__2 = symbols("c__2") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-a__1*x(t) - b__1*y(t) - c__1 + Derivative(x(t), t),0),Eq(-a__2*x(t) - b__2*y(t) - c__2 + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \text {Solution too large to show} \]