Internal
problem
ID
[13131]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
8,
system
of
first
order
odes
Problem
number
:
1909
Date
solved
:
Sunday, October 12, 2025 at 02:28:26 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = a*x(t)+g*y(t)+beta*z(t), diff(y(t),t) = g*x(t)+b*y(t)+alpha*z(t), diff(z(t),t) = beta*x(t)+alpha*y(t)+c*z(t)]; dsolve(ode);
ode={D[x[t],t]==a*x[t]+g*y[t]+\[Beta]*z[t],D[y[t],t]==g*x[t]+b*y[t]+\[Alpha]*z[t],D[z[t],t]==\[Beta]*x[t]+\[Alpha]*y[t]+c*z[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") Alpha = symbols("Alpha") BETA = symbols("BETA") a = symbols("a") b = symbols("b") c = symbols("c") g = symbols("g") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-BETA*z(t) - a*x(t) - g*y(t) + Derivative(x(t), t),0),Eq(-Alpha*z(t) - b*y(t) - g*x(t) + Derivative(y(t), t),0),Eq(-Alpha*y(t) - BETA*x(t) - c*z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
Timed Out