1.6.2 problem 2

Internal problem ID [172]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.7 (population models). Problems at page 82
Problem number : 2
Date solved : Tuesday, September 30, 2025 at 03:48:16 AM
CAS classification : [_quadrature]

\begin{align*} x^{\prime }&=10 x-x^{2} \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&=1 \\ \end{align*}
Maple. Time used: 0.056 (sec). Leaf size: 16
ode:=diff(x(t),t) = 10*x(t)-x(t)^2; 
ic:=[x(0) = 1]; 
dsolve([ode,op(ic)],x(t), singsol=all);
 
\[ x = \frac {10}{1+9 \,{\mathrm e}^{-10 t}} \]
Mathematica. Time used: 0.006 (sec). Leaf size: 21
ode=D[x[t],t]==10*x[t]-x[t]^2; 
ic={x[0]==1}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \frac {10 e^{10 t}}{e^{10 t}+9} \end{align*}
Sympy. Time used: 0.240 (sec). Leaf size: 12
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(x(t)**2 - 10*x(t) + Derivative(x(t), t),0) 
ics = {x(0): 1} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = \frac {10}{1 + 9 e^{- 10 t}} \]