Internal
problem
ID
[13144]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
9,
system
of
higher
order
odes
Problem
number
:
1924
Date
solved
:
Sunday, October 12, 2025 at 02:35:48 AM
CAS
classification
:
system_of_ODEs
ode:=[(x(t)^2+y(t)^2-t^2)*diff(x(t),t) = -2*t*x(t), (x(t)^2+y(t)^2-t^2)*diff(y(t),t) = -2*t*y(t)]; dsolve(ode);
ode={(x[t]^2+y[t]^2-t^2)*D[x[t],t]==-2*t*x[t],(x[t]^2+y[t]^2-t^2)*D[y[t],t]==-2*t*y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(2*t*x(t) + (-t**2 + x(t)**2 + y(t)**2)*Derivative(x(t), t),0),Eq(2*t*y(t) + (-t**2 + x(t)**2 + y(t)**2)*Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)
TypeError : NoneType object is not subscriptable