Internal
problem
ID
[13154]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
9,
system
of
higher
order
odes
Problem
number
:
1935
Date
solved
:
Wednesday, October 01, 2025 at 03:36:44 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = x(t)*(y(t)^2-z(t)^2), diff(y(t),t) = y(t)*(z(t)^2-x(t)^2), diff(z(t),t) = z(t)*(x(t)^2-y(t)^2)]; dsolve(ode);
ode={D[x[t],t]==x[t]*(y[t]^2-z[t]^2),D[y[t],t]==y[t]*(z[t]^2-x[t]^2),D[z[t],t]==z[t]*(x[t]^2-y[t]^2)}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq((-y(t)**2 + z(t)**2)*x(t) + Derivative(x(t), t),0),Eq((x(t)**2 - z(t)**2)*y(t) + Derivative(y(t), t),0),Eq((-x(t)**2 + y(t)**2)*z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
KeyError : F2_