55.2.1 problem 1

Internal problem ID [13227]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number : 1
Date solved : Wednesday, October 01, 2025 at 03:37:21 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=a y^{2}+b x +c \end{align*}
Maple. Time used: 0.010 (sec). Leaf size: 85
ode:=diff(y(x),x) = a*y(x)^2+b*x+c; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (\frac {b}{\sqrt {a}}\right )^{{1}/{3}} \left (\operatorname {AiryAi}\left (1, -\frac {b x +c}{\left (\frac {b}{\sqrt {a}}\right )^{{2}/{3}}}\right ) c_1 +\operatorname {AiryBi}\left (1, -\frac {b x +c}{\left (\frac {b}{\sqrt {a}}\right )^{{2}/{3}}}\right )\right )}{\sqrt {a}\, \left (c_1 \operatorname {AiryAi}\left (-\frac {b x +c}{\left (\frac {b}{\sqrt {a}}\right )^{{2}/{3}}}\right )+\operatorname {AiryBi}\left (-\frac {b x +c}{\left (\frac {b}{\sqrt {a}}\right )^{{2}/{3}}}\right )\right )} \]
Mathematica. Time used: 0.131 (sec). Leaf size: 143
ode=D[y[x],x]==a*y[x]^2+b*x+c; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {b \left (\operatorname {AiryBiPrime}\left (-\frac {a (c+b x)}{(-a b)^{2/3}}\right )+c_1 \operatorname {AiryAiPrime}\left (-\frac {a (c+b x)}{(-a b)^{2/3}}\right )\right )}{(-a b)^{2/3} \left (\operatorname {AiryBi}\left (-\frac {a (c+b x)}{(-a b)^{2/3}}\right )+c_1 \operatorname {AiryAi}\left (-\frac {a (c+b x)}{(-a b)^{2/3}}\right )\right )}\\ y(x)&\to \frac {b \operatorname {AiryAiPrime}\left (-\frac {a (c+b x)}{(-a b)^{2/3}}\right )}{(-a b)^{2/3} \operatorname {AiryAi}\left (-\frac {a (c+b x)}{(-a b)^{2/3}}\right )} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(-a*y(x)**2 - b*x - c + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -a*y(x)**2 - b*x - c + Derivative(y(x), x) cannot be solved by the lie group method