55.2.5 problem 5

Internal problem ID [13231]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number : 5
Date solved : Wednesday, October 01, 2025 at 03:41:56 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}+a n \,x^{n -1}-a^{2} x^{2 n} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 366
ode:=diff(y(x),x) = y(x)^2+a*n*x^(n-1)-a^2*x^(2*n); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-3 \left (n +2\right ) c_1 \left (\left (\frac {1}{3} n^{2}+n +\frac {2}{3}\right ) x^{-\frac {3 n}{2}}+a x \,x^{-\frac {n}{2}} \left (n +\frac {4}{3}\right )\right ) \operatorname {WhittakerM}\left (\frac {n +2}{2 n +2}, \frac {3+2 n}{2 n +2}, -\frac {2 a \,x^{n} x}{n +1}\right )+2 c_1 \left (n +1\right ) \left (\left (-\frac {1}{2} n^{2}-\frac {3}{2} n -1\right ) x^{-\frac {3 n}{2}}+x \left (\left (-1-\frac {n}{2}\right ) x^{-\frac {n}{2}}+a x \,x^{\frac {n}{2}}\right ) a \right ) \operatorname {WhittakerM}\left (-\frac {n}{2 n +2}, \frac {3+2 n}{2 n +2}, -\frac {2 a \,x^{n} x}{n +1}\right )+2 \left (n +2\right )^{2} c_1 \,x^{-\frac {3 n}{2}} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} \left (n +\frac {3}{2}\right ) \left (-\frac {2 a \,x^{n} x}{n +1}\right )^{\frac {3 n +4}{2 n +2}}+2 a \,x^{n} x^{2} {\mathrm e}^{-\frac {a \,x^{n} x}{n +1}}}{2 \left (-\frac {x^{-\frac {3 n}{2}} c_1 \left (n +2\right )^{2} \operatorname {WhittakerM}\left (\frac {n +2}{2 n +2}, \frac {3+2 n}{2 n +2}, -\frac {2 a \,x^{n} x}{n +1}\right )}{2}+c_1 \left (n +1\right ) \left (\left (-1-\frac {n}{2}\right ) x^{-\frac {3 n}{2}}+x^{-\frac {n}{2}} a x \right ) \operatorname {WhittakerM}\left (-\frac {n}{2 n +2}, \frac {3+2 n}{2 n +2}, -\frac {2 a \,x^{n} x}{n +1}\right )+{\mathrm e}^{-\frac {a \,x^{n} x}{n +1}} x \right ) x} \]
Mathematica. Time used: 0.686 (sec). Leaf size: 227
ode=D[y[x],x]==y[x]^2+a*n*x^(n-1)-a^2*x^(2*n); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {2^{\frac {1}{n+1}} (n+1) \left (-\frac {a x^{n+1}}{n+1}\right )^{\frac {1}{n+1}} \left (a x^n-c_1 e^{\frac {2 a x^{n+1}}{n+1}}\right )-a c_1 x^{n+1} \Gamma \left (\frac {1}{n+1},-\frac {2 a x^{n+1}}{n+1}\right )}{2^{\frac {1}{n+1}} (n+1) \left (-\frac {a x^{n+1}}{n+1}\right )^{\frac {1}{n+1}}-c_1 x \Gamma \left (\frac {1}{n+1},-\frac {2 a x^{n+1}}{n+1}\right )}\\ y(x)&\to \frac {2^{\frac {1}{n+1}} (n+1) e^{\frac {2 a x^{n+1}}{n+1}} \left (-\frac {a x^{n+1}}{n+1}\right )^{\frac {1}{n+1}}}{x \Gamma \left (\frac {1}{n+1},-\frac {2 a x^{n+1}}{n+1}\right )}+a x^n \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
n = symbols("n") 
y = Function("y") 
ode = Eq(a**2*x**(2*n) - a*n*x**(n - 1) - y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE a**2*x**(2*n) - a*n*x**(n - 1) - y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method