Internal
problem
ID
[13239]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
13
Date
solved
:
Wednesday, October 01, 2025 at 03:55:32 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Riccati, _special]]
ode:=x^2*diff(y(x),x) = a*x^2*y(x)^2+b; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],x]==a*x^2*y[x]^2+b; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(-a*x**2*y(x)**2 - b + x**2*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)