Internal
problem
ID
[13242]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
16
Date
solved
:
Wednesday, October 01, 2025 at 03:57:08 AM
CAS
classification
:
[_Riccati]
ode:=x^2*diff(y(x),x) = x^2*y(x)^2+a*x^(2*m)*(b*x^m+c)^n-1/4*n^2+1/4; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],x]==x^2*y[x]^2+a*x^(2*m)*(b*x^m+c)^n+1/4*(1-n^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(-a*x**(2*m)*(b*x**m + c)**n + n**2/4 - x**2*y(x)**2 + x**2*Derivative(y(x), x) - 1/4,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a*x**(2*m)*(b*x**m + c)**n - n**2/4 + x**2*y(x)**2 + 1/4)/x**2 cannot be solved by the factorable group method