Internal
problem
ID
[13244]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
18
Date
solved
:
Wednesday, October 01, 2025 at 04:05:19 AM
CAS
classification
:
[_rational, [_Riccati, _special]]
ode:=x^4*diff(y(x),x) = -x^4*y(x)^2-a^2; dsolve(ode,y(x), singsol=all);
ode=x^4*D[y[x],x]==-x^4*y[x]^2-a^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(a**2 + x**4*y(x)**2 + x**4*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)