55.2.25 problem 25

Internal problem ID [13251]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number : 25
Date solved : Wednesday, October 01, 2025 at 04:22:42 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}+a \,x^{n} y+a \,x^{n -1} \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 422
ode:=diff(y(x),x) = y(x)^2+a*x^n*y(x)+a*x^(n-1); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-{\mathrm e}^{\frac {x^{n +1} a}{2 n +2}} \left (-\frac {x^{n +1} a}{n +1}\right )^{-\frac {n}{2 n +2}} \left (n +1\right )^{2} \left (-n \,x^{-n -1}+a \right ) \operatorname {WhittakerM}\left (\frac {-n -2}{2 n +2}, \frac {2 n +1}{2 n +2}, -\frac {x^{n +1} a}{n +1}\right )-2 \left (-\frac {n \,x^{-n -1} {\mathrm e}^{\frac {x^{n +1} a}{2 n +2}} \left (-\frac {x^{n +1} a}{n +1}\right )^{-\frac {n}{2 n +2}} \left (n +1\right ) \operatorname {WhittakerM}\left (\frac {n}{2 n +2}, \frac {2 n +1}{2 n +2}, -\frac {x^{n +1} a}{n +1}\right )}{2}+a \left (n +\frac {1}{2}\right ) \left (c_1 x -{\mathrm e}^{\frac {x^{n +1} a}{n +1}}\right )\right ) n}{\left ({\mathrm e}^{\frac {x^{n +1} a}{2 n +2}} \left (-\frac {x^{n +1} a}{n +1}\right )^{-\frac {n}{2 n +2}} \left (n +1\right )^{2} \left (-n \,x^{-n -1}+a \right ) \operatorname {WhittakerM}\left (\frac {-n -2}{2 n +2}, \frac {2 n +1}{2 n +2}, -\frac {x^{n +1} a}{n +1}\right )+2 \left (-\frac {n \,x^{-n -1} {\mathrm e}^{\frac {x^{n +1} a}{2 n +2}} \left (-\frac {x^{n +1} a}{n +1}\right )^{-\frac {n}{2 n +2}} \left (n +1\right ) \operatorname {WhittakerM}\left (\frac {n}{2 n +2}, \frac {2 n +1}{2 n +2}, -\frac {x^{n +1} a}{n +1}\right )}{2}+a x c_1 \left (n +\frac {1}{2}\right )\right ) n \right ) x} \]
Mathematica. Time used: 0.489 (sec). Leaf size: 268
ode=D[y[x],x]==y[x]^2+a*x^n*y[x]+a*x^(n-1); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}\left (\frac {e^{\frac {a x^{n+1}}{n+1}}}{(x K[2]+1)^2}-\int _1^x\left (\frac {a e^{\frac {a K[1]^{n+1}}{n+1}} K[1]^n}{K[1] K[2]+1}-\frac {a e^{\frac {a K[1]^{n+1}}{n+1}} K[2] K[1]^{n+1}}{(K[1] K[2]+1)^2}+\frac {2 e^{\frac {a K[1]^{n+1}}{n+1}} K[2]^2 K[1]}{(K[1] K[2]+1)^3}-\frac {2 e^{\frac {a K[1]^{n+1}}{n+1}} K[2]}{(K[1] K[2]+1)^2}\right )dK[1]\right )dK[2]+\int _1^x\left (-a e^{\frac {a K[1]^{n+1}}{n+1}} K[1]^{n-1}+\frac {a e^{\frac {a K[1]^{n+1}}{n+1}} y(x) K[1]^n}{K[1] y(x)+1}-\frac {e^{\frac {a K[1]^{n+1}}{n+1}} y(x)^2}{(K[1] y(x)+1)^2}\right )dK[1]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-a*x**n*y(x) - a*x**(n - 1) - y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -a*x**n*y(x) - a*x**(n - 1) - y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method