Internal
problem
ID
[13254]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
28
Date
solved
:
Wednesday, October 01, 2025 at 04:34:23 AM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = y(x)^2+a*x^n*y(x)-a*b*x^n-b^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==y[x]^2+a*x^n*y[x]-a*b*x^n-b^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") n = symbols("n") y = Function("y") ode = Eq(a*b*x**n - a*x**n*y(x) + b**2 - y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE a*b*x**n - a*x**n*y(x) + b**2 - y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method