55.2.35 problem 35
Internal
problem
ID
[13261]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
35
Date
solved
:
Wednesday, October 01, 2025 at 04:49:54 AM
CAS
classification
:
[_rational, _Riccati]
\begin{align*} x y^{\prime }&=a y^{2}+b y+c \,x^{n} \end{align*}
✓ Maple. Time used: 0.002 (sec). Leaf size: 164
ode:=x*diff(y(x),x) = a*y(x)^2+b*y(x)+c*x^n;
dsolve(ode,y(x), singsol=all);
\[
y = \frac {\sqrt {a c}\, \left (\operatorname {BesselY}\left (\frac {b +n}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right ) c_1 +\operatorname {BesselJ}\left (\frac {b +n}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right )\right ) x^{\frac {n}{2}}-b \left (\operatorname {BesselY}\left (\frac {b}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right ) c_1 +\operatorname {BesselJ}\left (\frac {b}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right )\right )}{a \left (\operatorname {BesselY}\left (\frac {b}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right ) c_1 +\operatorname {BesselJ}\left (\frac {b}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right )\right )}
\]
✓ Mathematica. Time used: 0.194 (sec). Leaf size: 402
ode=x*D[y[x],x]==a*y[x]^2+b*y[x]+c*x^n;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to \frac {\sqrt {a} \sqrt {c} x^{n/2} \left (-2 \operatorname {BesselJ}\left (\frac {b}{n}-1,\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )+c_1 \left (\operatorname {BesselJ}\left (1-\frac {b}{n},\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )-\operatorname {BesselJ}\left (-\frac {b+n}{n},\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )\right )\right )-b c_1 \operatorname {BesselJ}\left (-\frac {b}{n},\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )}{2 a \left (\operatorname {BesselJ}\left (\frac {b}{n},\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )+c_1 \operatorname {BesselJ}\left (-\frac {b}{n},\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )\right )}\\ y(x)&\to -\frac {-\sqrt {a} \sqrt {c} x^{n/2} \operatorname {BesselJ}\left (1-\frac {b}{n},\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )+\sqrt {a} \sqrt {c} x^{n/2} \operatorname {BesselJ}\left (-\frac {b+n}{n},\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )+b \operatorname {BesselJ}\left (-\frac {b}{n},\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )}{2 a \operatorname {BesselJ}\left (-\frac {b}{n},\frac {2 \sqrt {a} \sqrt {c} x^{n/2}}{n}\right )} \end{align*}
✗ Sympy
from sympy import *
x = symbols("x")
a = symbols("a")
b = symbols("b")
c = symbols("c")
n = symbols("n")
y = Function("y")
ode = Eq(-a*y(x)**2 - b*y(x) - c*x**n + x*Derivative(y(x), x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a*y(x)**2 + b*y(x) + c*x**n)/x cannot be solved by the factorable group method