Internal
problem
ID
[13269]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
43
Date
solved
:
Wednesday, October 01, 2025 at 04:57:35 AM
CAS
classification
:
[_rational, _Riccati]
ode:=x*diff(y(x),x) = a*x^(2*n)*y(x)^2+(b*x^n-n)*y(x)+c; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]==a*x^(2*n)*y[x]^2+(b*x^n-n)*y[x]+c; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") n = symbols("n") y = Function("y") ode = Eq(-a*x**(2*n)*y(x)**2 - c + x*Derivative(y(x), x) - (b*x**n - n)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a*x**(2*n)*y(x)**2 + b*x**n*y(x) + c - n*y(x))/x cannot be solved by the factorable group method