Internal
problem
ID
[13271]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
45
Date
solved
:
Wednesday, October 01, 2025 at 04:59:01 AM
CAS
classification
:
[_rational, _Riccati]
ode:=(a__2*x+b__2)*(diff(y(x),x)+lambda*y(x)^2)+(a__1*x+b__1)*y(x)+a__0*x+b__0 = 0; dsolve(ode,y(x), singsol=all);
ode=(a2*x+b2)*(D[y[x],x]+\[Lambda]*y[x]^2)+(a1*x+b1)*y[x]+a0*x+b0==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") a__0 = symbols("a__0") a__1 = symbols("a__1") a__2 = symbols("a__2") b__0 = symbols("b__0") b__1 = symbols("b__1") b__2 = symbols("b__2") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(a__0*x + b__0 + (a__1*x + b__1)*y(x) + (a__2*x + b__2)*(lambda_*y(x)**2 + Derivative(y(x), x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out