Internal
problem
ID
[13283]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
57
Date
solved
:
Wednesday, October 01, 2025 at 05:36:29 AM
CAS
classification
:
[_rational, _Riccati]
ode:=(a*x^2+b)*diff(y(x),x)+alpha*y(x)^2+beta*x*y(x)+gamma = 0; dsolve(ode,y(x), singsol=all);
ode=(a*x^2+b)*D[y[x],x]+\[Alpha]*y[x]^2+\[Beta]*x*y[x]+\[Gamma]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") BETA = symbols("BETA") Gamma = symbols("Gamma") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(Alpha*y(x)**2 + BETA*x*y(x) + Gamma + (a*x**2 + b)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out