Internal
problem
ID
[13291]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
65
Date
solved
:
Wednesday, October 01, 2025 at 06:00:50 AM
CAS
classification
:
[_rational, _Riccati]
ode:=x^3*diff(y(x),x) = a*x^3*y(x)^2+(b*x^2+c)*y(x)+s*x; dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],x]==a*x^3*y[x]^2+(b*x^2+c)*y[x]+s*x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") s = symbols("s") y = Function("y") ode = Eq(-a*x**3*y(x)**2 - s*x + x**3*Derivative(y(x), x) - (b*x**2 + c)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -a*y(x)**2 - b*y(x)/x - c*y(x)/x**3 - s/x**2 + Derivative(y(x), x) cannot be solved by the factorable group method