Internal
problem
ID
[13294]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
68
Date
solved
:
Wednesday, October 01, 2025 at 06:08:40 AM
CAS
classification
:
[_rational, _Riccati]
ode:=x^2*(x+a)*(diff(y(x),x)+lambda*y(x)^2)+x*(b*x+c)*y(x)+alpha*x+beta = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*(x+a)*(D[y[x],x]+\[Lambda]*y[x]^2)+x*(b*x+c)*y[x]+\[Alpha]*x+\[Beta]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") BETA = symbols("BETA") a = symbols("a") b = symbols("b") c = symbols("c") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(Alpha*x + BETA + x**2*(a + x)*(lambda_*y(x)**2 + Derivative(y(x), x)) + x*(b*x + c)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out