55.2.68 problem 68

Internal problem ID [13294]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number : 68
Date solved : Wednesday, October 01, 2025 at 06:08:40 AM
CAS classification : [_rational, _Riccati]

\begin{align*} x^{2} \left (x +a \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b x +c \right ) y+\alpha x +\beta &=0 \end{align*}
Maple. Time used: 0.006 (sec). Leaf size: 1479
ode:=x^2*(x+a)*(diff(y(x),x)+lambda*y(x)^2)+x*(b*x+c)*y(x)+alpha*x+beta = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {Expression too large to display} \]
Mathematica. Time used: 2.196 (sec). Leaf size: 1770
ode=x^2*(x+a)*(D[y[x],x]+\[Lambda]*y[x]^2)+x*(b*x+c)*y[x]+\[Alpha]*x+\[Beta]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}
Sympy
from sympy import * 
x = symbols("x") 
Alpha = symbols("Alpha") 
BETA = symbols("BETA") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
lambda_ = symbols("lambda_") 
y = Function("y") 
ode = Eq(Alpha*x + BETA + x**2*(a + x)*(lambda_*y(x)**2 + Derivative(y(x), x)) + x*(b*x + c)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out