Internal
problem
ID
[13307]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.3.
Equations
Containing
Exponential
Functions
Problem
number
:
3
Date
solved
:
Wednesday, October 01, 2025 at 06:38:59 AM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = sigma*y(x)^2+a+b*exp(lambda*x)+c*exp(2*lambda*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==sigma*y[x]^2+a+b*Exp[\[Lambda]*x]+c*Exp[2*\[Lambda]*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") lambda_ = symbols("lambda_") sigma = symbols("sigma") y = Function("y") ode = Eq(-a - b*exp(lambda_*x) - c*exp(2*lambda_*x) - sigma*y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -a - b*exp(lambda_*x) - c*exp(2*lambda_*x) - sigma*y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method