55.3.7 problem 7

Internal problem ID [13311]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number : 7
Date solved : Wednesday, October 01, 2025 at 06:42:52 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}+a \,{\mathrm e}^{2 \lambda x} \left ({\mathrm e}^{\lambda x}+b \right )^{n}-\frac {\lambda ^{2}}{4} \end{align*}
Maple. Time used: 0.029 (sec). Leaf size: 1479
ode:=diff(y(x),x) = y(x)^2+a*exp(2*lambda*x)*(exp(lambda*x)+b)^n-1/4*lambda^2; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {Expression too large to display} \]
Mathematica
ode=D[y[x],x]==y[x]^2+a*Exp[2*\[Lambda]*x]*(Exp[\[Lambda]*x]+b)^n-1/4*\[Lambda]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
lambda_ = symbols("lambda_") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-a*(b + exp(lambda_*x))**n*exp(2*lambda_*x) + lambda_**2/4 - y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -a*(b + exp(lambda_*x))**n*exp(2*lambda_*x) + lambda_**2/4 - y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method