Internal
problem
ID
[13311]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.3.
Equations
Containing
Exponential
Functions
Problem
number
:
7
Date
solved
:
Wednesday, October 01, 2025 at 06:42:52 AM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = y(x)^2+a*exp(2*lambda*x)*(exp(lambda*x)+b)^n-1/4*lambda^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==y[x]^2+a*Exp[2*\[Lambda]*x]*(Exp[\[Lambda]*x]+b)^n-1/4*\[Lambda]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") lambda_ = symbols("lambda_") n = symbols("n") y = Function("y") ode = Eq(-a*(b + exp(lambda_*x))**n*exp(2*lambda_*x) + lambda_**2/4 - y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -a*(b + exp(lambda_*x))**n*exp(2*lambda_*x) + lambda_**2/4 - y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method