Internal
problem
ID
[13317]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.3.
Equations
Containing
Exponential
Functions
Problem
number
:
13
Date
solved
:
Wednesday, October 01, 2025 at 06:59:42 AM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = exp(lambda*x)*y(x)^2+a*exp(x*mu)*y(x)+a*lambda*exp((mu-lambda)*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==Exp[\[Lambda]*x]*y[x]^2+a*Exp[\[Mu]*x]*y[x]+a*\[Lambda]*Exp[(\[Mu]-\[Lambda])*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") lambda_ = symbols("lambda_") mu = symbols("mu") y = Function("y") ode = Eq(-a*lambda_*exp(x*(-lambda_ + mu)) - a*y(x)*exp(mu*x) - y(x)**2*exp(lambda_*x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -a*lambda_*exp(-lambda_*x + mu*x) - a*y(x)*exp(mu*x) - y(x)**2*exp(lambda_*x) + Derivative(y(x), x) cannot be solved by the factorable group method