Internal
problem
ID
[13325]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.3.
Equations
Containing
Exponential
Functions
Problem
number
:
21
Date
solved
:
Wednesday, October 01, 2025 at 07:21:49 AM
CAS
classification
:
[_Riccati]
ode:=(exp(lambda*x)*a+b*exp(x*mu)+c)*(diff(y(x),x)-y(x)^2)+a*lambda^2*exp(lambda*x)+b*mu^2*exp(x*mu) = 0; dsolve(ode,y(x), singsol=all);
ode=(a*Exp[\[Lambda]*x]+b*Exp[\[Mu]*x]+c)*(D[y[x],x]-y[x]^2)+a*\[Lambda]^2*Exp[\[Lambda]*x]+b*\[Mu]^2*Exp[\[Mu]*x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") lambda_ = symbols("lambda_") mu = symbols("mu") y = Function("y") ode = Eq(a*lambda_**2*exp(lambda_*x) + b*mu**2*exp(mu*x) + (-y(x)**2 + Derivative(y(x), x))*(a*exp(lambda_*x) + b*exp(mu*x) + c),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-a*lambda_**2*exp(lambda_*x) + a*y(x)**2*exp(lambda_*x) - b*mu**2*exp(mu*x) + b*y(x)**2*exp(mu*x) + c*y(x)**2)/(a*exp(lambda_*x) + b*exp(mu*x) + c) cannot be solved by the factorable group method