Internal
problem
ID
[13352]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.4-1.
Equations
with
hyperbolic
sine
and
cosine
Problem
number
:
8
Date
solved
:
Wednesday, October 01, 2025 at 08:06:22 AM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = alpha*y(x)^2+beta+gamma*cosh(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==\[Alpha]*y[x]^2+\[Beta]+\[Gamma]*Cosh[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") BETA = symbols("BETA") Gamma = symbols("Gamma") y = Function("y") ode = Eq(-Alpha*y(x)**2 - BETA - Gamma*cosh(x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -Alpha*y(x)**2 - BETA - Gamma*cosh(x) + Derivative(y(x), x) cannot be solved by the lie group method