Internal
problem
ID
[13370]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.4-2.
Equations
with
hyperbolic
tangent
and
cotangent.
Problem
number
:
26
Date
solved
:
Wednesday, October 01, 2025 at 08:45:21 AM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = y(x)^2-2*lambda^2*tanh(lambda*x)^2-2*lambda^2*coth(lambda*x)^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==y[x]^2-2*\[Lambda]^2*Tanh[\[Lambda]*x]^2-2*\[Lambda]^2*Coth[\[Lambda]*x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(2*lambda_**2*tanh(lambda_*x)**2 + 2*lambda_**2/tanh(lambda_*x)**2 - y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE 2*lambda_**2*tanh(lambda_*x)**2 + 2*lambda_**2/tanh(lambda_*x)**2 - y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method