Internal
problem
ID
[13372]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.5-1.
Equations
Containing
Logarithmic
Functions
Problem
number
:
1
Date
solved
:
Wednesday, October 01, 2025 at 08:58:25 AM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = a*ln(x)^n*y(x)^2+b*m*x^(m-1)-a*b^2*x^(2*m)*ln(x)^n; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==a*(Log[x])^n*y[x]^2+b*m*x^(m-1)-a*b^2*x^(2*m)*(Log[x])^n; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(a*b**2*x**(2*m)*log(x)**n - a*y(x)**2*log(x)**n - b*m*x**(m - 1) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE a*b**2*x**(2*m)*log(x)**n - a*y(x)**2*log(x)**n - b*m*x**(m - 1) + Derivative(y(x), x) cannot be solved by the lie group method