Internal
problem
ID
[13378]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.5-1.
Equations
Containing
Logarithmic
Functions
Problem
number
:
7
Date
solved
:
Wednesday, October 01, 2025 at 09:16:48 AM
CAS
classification
:
[_Riccati]
ode:=x^2*diff(y(x),x) = x^2*y(x)^2+a*ln(x)^2+b*ln(x)+c; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],x]==x^2*y[x]^2+a*(Log[x])^2+b*Log[x]+c; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") y = Function("y") ode = Eq(-a*log(x)**2 - b*log(x) - c - x**2*y(x)**2 + x**2*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a*log(x)**2 + b*log(x) + c + x**2*y(x)**2)/x**2 cannot be solved by the factorable group method